











## SCREENING AND STRENGHTENING ACTIVITIES OF FINE MOTOR SKILLS IN PEDIATRIC PATIENTS UNDER TREATMENT FOR ONCOHEMATOLOGICAL DISEASES

Marta Tremolada, Livia Taverna, Roberta Maria Incardona, Valentina Mastrandrea, Sabrina Bonichini, Alessandra Biffi



#### FINE MOTOR SKILLS IN PATIENTS WITH ONCOHEMATOLOGICAL DISEASES

It favors the acquisition of **autonomy** (Axford et al., 2018)

Ability to coordinate a group of small muscles that promote movements such as grabbing, twisting and threading. (John, 2013)

- It stimulates **exploration**, **creativity** and **curiosity** (*Axford et al., 2018; Lopes et al.,2013*)
  - It enhances concentration (Vieira et al., 2017)

Oncohematological disease

o It strengthens **self-esteem** and a sense of **self-confidence** (*McHale et al., 1992*)

It is indispensable for learning **writing** and **reading** and it influences subsequent school performance

(McGlashan et al., 2017; Taverna et al., 2017)

- Neuromuscular deficits and atrophies (Scheede-Bergdahl et al., 2013)
- Difficulty in fine motor dexterity and manual coordination (De Luca et al., 2013; Green et al., 2013; Taverna et al., 2017; Tremolada et al., 2018)
- Visual-motor difficulty (Green et al., 2013; Hockenberry et al., 2007; Balsamo et al., 2015)
- Difficulty in writing tasks (Goebel et al., 2019)
- Decrease in precision and speed of the stroke and increase in pressure (Reinders - Messelink et al., 2001)



#### **OBJECTIVES**

Assessment of fine motor skills in pediatric patients in treatment for oncohematological disease



Promote the acquisition of manual dexterity, strength in the hands and enhance grapho-motor skills



#### **PARTICIPANTS**

53 children:

27 males

**26** females

Median age: 5.86

(SD=2.04)

(range 3-10 anni)

#### **DIAGNOSIS**

- 29 ALL SR and LNH
- 18 AML and ALL HR
- 6 aplastic anemia

#### **EXCLUSION CRITERIA**

- HSCT Ward
- Terminal phase
- Physical disfunctions

Caucasian (75.5%) and all non-Caucasian speaking Italian



#### STARTING ASSESSMENT

#### **INTERVENTION**

### FINAL ASSESSMENT

#### Assessment tools

- MOVEMENT ABC-2 (MD1, MD2, MD3)
- VMI
- Socio-demographic and technological devices use questionnaires

#### Assessment tools

Observative sheets

#### **ACTIVITY EXAMPLES**

- Color, cut out, fold the paper
- Thread
- Gripping/manual work
- Precision work
- Model

#### Assessment tools

- MOVEMENT ABC-2 (MD1, MD2, MD3)
- VMI



Children during the Movement ABC test



#### **ACTIVITY EXAMPLES**

#### Low difficulty





#### Mean difficulty



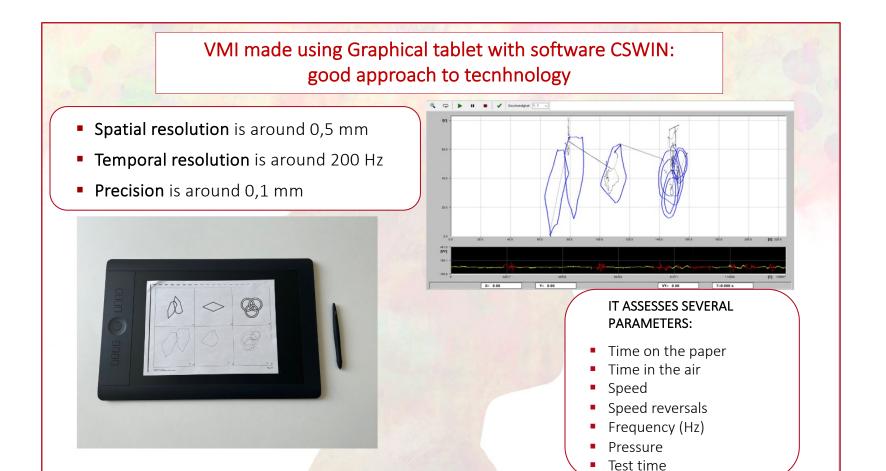


#### High difficulty





#### PRELIMINARY OBSERVATIONS


- Difficulty in pencil grip
- Few difficulties in finger-palm translation and palmfinger translation
- Fatigue and low hands-strength
- Longer duration time of the activities
- Incorrect posture
- Hyperactivity
- Enthusiasm and need to make the "games"
- Difficulty to understand the delivery
- Amelioration of percentiles in Movement ABC-2 Battery



Child aged 4.04 years old during free drawing: difficulty in pencil grip



#### PRELIMINARY OBSERVATIONS





#### **RESEARCH AREAS**

- A Assessment of manual dextery and visuo- motor skills.
- **B Socio-demographic characteristics** that influence fine motor skills scores.
- C Technological devices and fine motor skills.
- **D** Improvements following the fine motor training.



#### **RESULTS:** /

Range M

Clir

Nor

line















1. Vertical

2. Horizontal line

3. Circle

4.Cross

5. Right oblique line

6.Square

7. Left oblique line 8.Oblique Cross

















9.Triangle

10. Open square & 11. 3-line cross circle

12. Arrows

13. 2-D rings

14. Six circles

15. Circle & tilted square

16. Vertical damond

A2: the sar the compa matched h



17. Tilted triangles



circle

18. 8-dot



19. Wertheimer's Hexagons



20. Horizontal damond



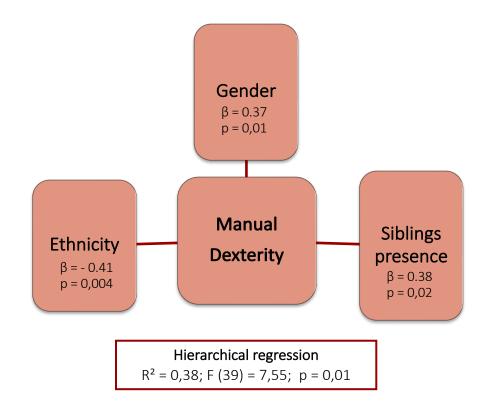
21. 3-D rings



22. Necker cube






23. Tapered box

24. 3-D Star



#### RESULTS: B and C

- Child's characteristics: males with lower fine motor performances (Morley et al. 2015).
- Family's charcateristics: important the contextual stimulation (Giannini, & Pittau, 2013).



C1: Use of technnological devices influences negatively the fine motor competencies (Sulzenbruck et al., 2011).

#### Descriptive statistics

|             | Mean               | SD    | Min | Max |
|-------------|--------------------|-------|-----|-----|
| Tablet      | <mark>84.05</mark> | 77.7  | 0   | 240 |
| Computer    | 50.60              | 64.84 | 0   | 240 |
| Smart-phone | 19.37              | 31.89 | 0   | 150 |

#### Spearmans' correlations

|     |     | Tablet use in minutes | PC use in minutes |
|-----|-----|-----------------------|-------------------|
| MOV | rho | 403*                  | 381*              |
|     | р   | .016                  | .024              |
| NMI | rho | -343*                 | 204               |
|     | р   | .044                  | .239              |



#### RESULTS: D

Time\*Enhancement

**D1:** positive effect of the enhancement on the improvement of fine motor skills (Tanner et al., 2015).

#### **ABC Movement scores** pre-test □ post-test 12,11 10,11 9,83 9,66 Enhanced No-Enhanced df np² F β р Time 4.51 .053 .258 .503

6.31\*

.026

.327

.642

# VMI scores Pre-test Post-test 117,33 120,8 114,6 No-Enhanced No-Enhanced

|                  | F      | df | р     | np²  | β    |
|------------------|--------|----|-------|------|------|
| Time             | 2.86   | 1  | .116  | .193 | .344 |
| Time*Enhancement | 22.83* | 1  | <.001 | .655 | .992 |




#### **CONCLUSIONS**

- 1. Children with pediatric cancer showed worse performance in VMI tasks comparing with healthy peers and with norms
- **2.** Males, non-Caucasian and without siblings were more at risk for motor functioning

#### In this study:

**3.** The longer use of tablet in children was associated with worse performances in the manual dexterity tests and in VMI tasks

**4.** Targeted and timely intervention could ameliorate manual dexterity scores in pediatric patients





#### **DISCUSSION**

#### **LIMITS**

- Reduced sample
- No involvement of children who underwent HSCT
- Different settings for enhancing activities

#### **FUTURE RECOMMENDATIONS**

- To involve more regularly all patients in the fine motor training phase
- To investigate further characteristics of the child in more detail through direct interviews with the parents and the involvement of other health professionals
- Longitudinal approach
- To involve other centers to increase the number of participants.
- Specific motor psycho-educative programs should be implemented for the pediatric patients more at risk.



#### **CLINICAL IMPLICATIONS**

- Difficulties in visual-motor integration or in manual dexterity could impact on writing capacities.
- This difficult performance could influence self-esteem and learning in the delicate phase of coming back to school.
- Research has established a connection between fine motor skills and academic performance (Grissmer et al., 2010; Son & Meisels, 2006; Cameron et al., 2012).
- It is important to enhance these fine motor skills for children's short and long term adaptation to their daily activities













#### Marta Tremolada

marta.tremolada@unipd.it

Department of Developmental and Social Psychology

Pediatric Hematology, Oncology and Stem Cell Transplant Center, Department of Woman's and Child's Health, University of Padua